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Gabor transform and intermittency in turbulence
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Intermittency effects basically limited to the viscous subrange contaminate the Gabor filtering analysis
in the inertial subrange. The contamination decreases with an increase in the quality factor of the filter,
and the Gabor transform coefficients of turbulent velocity have scaling properties approaching the Kol-
mogorov scaling. In the limit of an infinitely long inertial range, there is no anomalous scaling, i.e., no
non-Gaussianity. The wavelet transform coefficients of turbulent velocity and its structure functions fol-
low probability rules depending on the scales extracted by analyzing wavelet functions. This anomalous
scaling property is produced by the intermittency effects inherent in the viscous subrange. The structure
functions cannot extract properties in a pure inertial subrange.

PACS number(s): 47.27.—1i, 02.50.—r, 03.40.Gc¢, 47.53.+n

I. INTRODUCTION

Anselmet et al. [1] first observed the anomalous scal-
ing (Paladin and Vulpiani [2] and Grassberger [3]) of the
several-order moments (structure functions) of velocity
differences. Their experimental results showed that the
scaling exponents &, for the nth-order structure functions
are expressed as a nonlinear function of n. This result at-
tracted considerable attention to the multifractal nature
of turbulent velocity structures. An explanation for the
nonlinearity of &, was offered by Benzi et al. [4] and
Meneveau and Sreenivasan [5] with the multifractal cas-
cade models.

Katsuyama, Horiuchi, and Nagata [6] experimentally
investigated the frequency-dependent behavior of the
several-order moments of frequency-band-pass filtered
signals of turbulent velocity and arrived at the following
outcomes. At inertial subrange frequencies of the band-
pass filter (Q =4), the (2n)th-order moments showed the
anomalous scaling property, as reported by Anselmet
et al. for the structure functions. This result means that
the probability density function (PDF) of the signal, with
an increase in the midband frequency, deviates gradually
from the Gaussian PDF.

On the other hand, at viscous subrange (VSR) frequen-
cies, the deviation of PDF becomes more and more re-
markable with an increase in the midband frequency: at
these frequencies, the band-pass signals are more inter-
mittent than ones at the inertial subrange (ISR) frequen-
cies. Such changes in the PDF at the inertial and viscous
range frequencies reflect the viscous breakdown of the
self-similar property of turbulent velocity, and indicate
the intermittency basically limited in the VSR.

The Navier-Stokes equation for incompressible fluids is
formally invariant under the scaling transformations, in
the inviscid limit, i.e., at an infinitely large Reynolds
number [7]. The scaling transformation invariance sug-
gests that the exponents §, should be expressed as a
linear function of n. This linear exponent corresponds to
the —3$ power law of an energy spectrum in an infinitely
long ISR (Kolmogorov’s hypothesis [8]). In the present
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study, we answer the question of whether the nonlinear
dynamics itself admits the nonlinearity of §,, i.e., the
anomalous scaling.

To answer the above question, we investigated the scal-
ing property of the moments of Gabor transform
coefficients for turbulent velocity signals. The Gabor
transform is an analysis filter, which makes it possible to
realize Q values (quality factors) much larger than that
which can be attained with an electrical band-pass filter.
The present study makes it clear that the nonlinearity of
&, observed for the structure functions and the band-pass
filtered signals at small Q values is mainly due to contam-
ination by intermittency effects inherent in the VSR. In
addition, we show that at sufficiently large Q values, the
PDFs of the Gabor transform coefficients of turbulent ve-
locity signals are nearly Gaussian at the ISR frequencies.

II. GABOR TRANSFORM

The Gabor transform [9] is a short-time Fourier trans-
form with a Gaussian window function used to localize
the analyzed signals. It is expressed as

Glu())Q,0,t")= ‘/%m 7 utoeos[t—1)+6]
(t—1t')?
xexp | —LE) g
exp 202

(2.1)

where G denotes the Gabor transform operator, the time
scale o0 measures the localization of the analyzed signal,
Q is its angular frequency, and 0 is its phase shift. The
Gabor transform analysis extracts the (-frequency sig-
nals from a translating o-size part in the time domain of
the turbulent velocity sequence u (t).

Each window element in a Gabor transform time-
frequency domain has a time width Az=V"2¢ and an an-
gular frequency width AQ=V"2/0 [Egs. (A3) and (A4) in
the Appendix]. For each translated Gabor function, the
window elements have a constant time-frequency resolu-
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tion, At AQ =2; therefore, when the time scale o is large,
the Gabor transform is poor in time resolution but good
in frequency resolution.

The Gabor function, given in the form of
cos(Qt +0)exp(—12/20?), is an oscillatory function with
the Gaussian envelope. Let M be the number of cycles of
the oscillation within the interval Ar=V"20. Then, the
(angular) frequency is given as Q=27M /At =v27M /o.
Since AQ=V2/0, the Q value, i.e., Q /AQ, is defined as

o=mM . (2.2)

To actually obtain the spectrogram of a signal by filter-
ing (e.g., using an electrical band-pass filter), one must
keep its Q value constant. The same is required for the
Gabor transform analysis. Now, since Q=Q/AQ and

=v2/0, the two parameters in Eq. (2.1), Q and o,
are connected by Qo= \/2Q, therefore, when the Q value
remains constant for a required frequency resolution, the
Gabor function is a function of Q (or o) only. Then, Q is
merely a parameter which specifies the quality factor of
Gabor transform filtering. Hence, using 0 =Vv2Q /Q, we
can rewrite Eq. (2.1) in the form

Gou(,1)= [ 7 ult)go(Q,1 —1")dt (2.3)
with
10 o |
gQ(Q,t)Z—Z_—ECOS(Qt-FQ)exp Eét , (2.4)

where G denotes the Gabor transform operator at con-
stant Q values and g,(),¢) is a constant-Q Gabor func-
tion. The simple notation GQu(Q,t') has been used in-
stead of G[u(?)](Q,0,t') on the left-hand side of Eq.
(2.1).

Since the constant-Q filtering keeps M constant, the
Gabor function gy(€},7), expressing a ‘“Gaussian-
modulated wave packet,” has a scaling property
gQ(kQ,t)=ng(Q,kt). Hence, the constant-Q Gabor
transform analysis makes it possible to examine the self-
similar nature of u(¢): the constant-Q Gabor function
(2.4) is a scaling function to obtain the scaling properties
of Gou(Q,t'). Using Eq. (2.4), we performed the Gabor
transform analysis in an ) domain for each given Q value
and experimentally investigated the Q dependence of the
statistical property of similar velocity structures extract-
ed by the constant-Q Gabor transform.

The wavelet transform of u (¢) with respect to a given
admissible mother wavelet g(¢) provides a wavelet
domain coefficient at scale a ( >0) and translation ¢’ [10]:

Weuta=—[" ulng* dt @.5)

where W, denotes the continuous wavelet transform
operator and the superscript * denotes complex conjuga-
tion. The wavelet transform is a broadband filtering, and
breaks a signal down into scale components (i.e., scalo-
gram). We used the following four analyzing wavelets: (i)
the sombrero wavelet (the second derivative of a Gauss-
ian function exp[ —¢2/2], (ii) the first derivative of the
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FIG. 1. The wavelet and Gabor transform coefficient of tur-
bulent velocit signal u (z). (a) The original signal u (#); (b) som-
brero wavelet transform coefficient; (c) Gabor transform
coefficient with Q =4.4; (d) with @ =13, at Q) /27=1.0 kHz.
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Gaussian function, (iii) the top hat wavelet, and (iv) the
double delta-function wavelet g(z)=38(¢ + At)—8(z).

The last wavelet (iv) gives a velocity difference between
two points ¢ and t+At,u(t’'—At)—u(t’), the (2n)th-
order moments of which are the (2n)th-order structure
functions of u(z), Sy, (A1)={(|u(t'—At)—u(t")|*").
The structure functions do not have the scaling parame-
ter a in Eq. (2.5). However, if S,,(At) has a scaling prop-
erty, one obtains S,,(AAf)=A""S, (At), A being a posi-
tive real number. Anselmet et al. [1] investigated this
scaling property.

The wavelet and the Gabor transform coefficients of
u (t) are random variables for translating mother func-
tions. Figure 1(a) shows an original signal u (¢) in the
time domain, 1(b) is a translation domain representation
of its sombrero wavelet transform at an ISR scale, and
1(c) and 1(d) are its Gabor transform representations with
different Q values at the same ISR frequency. From a
comparison between Figs. 1(b) and 1(a), it follows that a
sombrero wavelet transform operator removes very low
frequency components and very high ones from the origi-
nal signal; thus, the transformed signal in Fig. 1(b) still
contains widely distributed frequency components.

As seen in Figs. 1(c) and 1(d), the Gabor transform
analysis exhibits the train of wave packets, the average
duration of which is long at the large Q value
(AtAQ=2). This feature is a fundamental property of
narrow band filtering, which exhibits oscillatory signals
having frequencies specified by Q/27. At significantly
different Q values, the analyzed signals have no similari-
ty. On the other hand, analyzed signals with the broad-
band wavelet functions cannot show amplitude-
modulated oscillations. Figures 1(b)-1(d) suggest that
the statistical property of the extracted signals depends
on the quality factor Q in filtering. This Q dependence is
investigated for a fully developed turbulent jet air flow,
and leads to a correct understanding of intermittency.

III. Q DEPENDENCE OF GABOR TRANSFORM
COEFFICIENTS

The streamwise component of turbulent velocity in the
jet flow, u(t), was detected with a hot-wire anemometer
and the detected signal was digitized with 12-bit resolu-
tion. The time sequence of u(¢) was sampled at seven
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different intervals of 2, 5, 10, 30, 100, 300, and 1000 us.
The wavelet and the Gabor transform coefficients were
numerically calculated from the records of 1.6X 10° data
obtained at each sampling rate. The mean flow velocity
at the measuring position was U=15m/s, and the tur-
bulence Reynolds number R, =270. Figure 2 shows the
experimentally obtained one-dimensional energy-
frequency spectral distribution of u (¢), E,(f), where f is
a frequency. In the ISR ranging from f, to 63f,, E(f)
approximately shows the — 32 power law.

The (2n)th-order moments of the Gabor transform
coefficients GQu(Q,t’), M,,(Q,Q), are given as

MZ,,(Q,Q)=% _TT[GQu(Q,t’)]Z"dt’, 3.1)
where 2T is the total time in the translation and
n=1,2,... . The moments M,,(£),Q) were evaluated
across an () domain at each of the given Q values. The
moments are independent of the phase shift & on the
right-hand side (rhs) of Eq. (2.4). In the experiment, we
chose 6=0.

Figures 3(a) and 3(b) show the log-log plots of
M,, (Q,Q) versus Q2/27(=f) at the different Q values,
where the arrows indicate the minimal and maximal fre-
quencies of the ISR of E(f). The plots in 3(a) and 3(b)
have the same scaling range from f to 63f,. The scal-
ing range corresponds to the ISR of E(f) (Fig. 2), ir-
respective of the Q value. The scaling property disap-
pears in the high frequency range such that f>63f,.
The straight lines in Fig. 3 were obtained by applying the
least squares method to the data in the ISR. The mo-
ments M,, (Q, Q) have a scaling property expressed by

—65,(Q)
’

M,,(Q,0)=Q (3.2)

where §,,(Q) is a scaling exponent.

The scaling property of M,, (£, Q) was investigated for
Q values ranging from 1.6 to 89. The scaling exponents
$,,(0) depended on the Q value. Figure 4 shows the
plots of §,,(Q) versus 2n. The §,,(Q) curves are non-
linear at all the given Q values. As the Q value gets
larger, the nonlinear curves of §,,(Q) have a tendency to
shift toward the straight line §,,=2n/3, the Kolmo-

Ed(1)
3

Jo \ [63%
10' 107 10° 10
f (Hz2)

FIG. 2. One-dimensional frequency-energy spectrum E,(f).
The arrows indicate both ends of its inertial range. Arbitrary
units on the ordinate.
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FIG. 3. Log-log plots of M,,(Q,Q) vs Q/2m at @ =27 (a) and
89 (b). Arbitrary units on the ordinate.

gorov scaling. This behavior is attributed to the effect
that the narrower frequency bands decrease contamina-
tion by the intermittency effects in the VSR: at small Q
values, the scaling property in the ISR includes contam-
ination by the intermittency effects.

Figure 5 shows the Q dependence of §,,(Q) for
n=1,2,...,6. The exponents &,,(Q), with an increase
in the Q value, have a tendency to approach the constant
values 2n /3. Concerning the second moment M,(Q,Q),
it is easy to theoretically show that its scaling exponent
£,(Q) should depend on the Q value. As shown in the
Appendix, M,(Q,Q) is given by Eq. (A9). Here, we in-
troduce a function with a unity integral, 8(w—Q,0):

8(o—Q,0)=—2—exp[—0Aw—Q)?] . (3.3)
v
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FIG. 4. Plots of {4, (Q) vs 2n for different Q values, where the
straight line is §,, =2n /3.
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FIG. 5. The Q dependence of §,,(Q).

This function 8(w—Q,0), with increasing o, differs ap-
preciably from zero only over a smaller and smaller  in-
terval around o=. In the limit 0 — o, 8(w—Q,0) is
the Dirac delta function. B

By using Eq. (3.3) and 0 =Vv2Q/Q, we rewrite Eq.
(A9) in the form

1 ©
MZ(Q,Q)K—@f_wE,(w)S do .

© _
— — ’V
o bV

(3.4)

This expression shows that the scaling exponent of
M,(Q,Q) should depend on the Q value. However, as
demonstrated in Fig. 5, the Q dependence becomes more
and more conspicuous at the order numbers larger than
2. Since E (@)= |o| ™" in the limit R, — o, the limit
Q — « leads Eq. (3.4) to
M,(Q,0)=Ql 75", 3.5
Then, the second moment M,(Q,Q) exactly obeys the
scaling law.
The non-Gaussianity of the PDF can be described by
the following factor:

_ @2n—1n [M,(2,0)]"
Y@= M, (0,0 (3.6)
where (2n —1)!=(2n —1)(2n —3)X - -+ X3X1. When

the PDF of Gyu(Q,t') is exactly Gaussian, one has
¥2.(Q)=1 at every order. The intermittency of tur-
bulent velocity causes the PDF to deviate from the
Gaussian PDF. In this sense, we called this factor
Y2.(Q) a (2n)th-order “intermittency factor” [6].

Figures 6(a) and 6(b) show the log-log plots of y,,(Q)
versus () /27 at the two different Q values. The frequen-
cy range in which y,,(Q) takes the fixed value of 0.5 for
all the given orders is quite narrow at the small Q value
[6(a)], but at the large Q value [6(b)], it extends to the
high frequency end 63f, of the ISR of E|(f). At these
frequencies at which y,,(Q)=0.5 at all the given n
values, the PDFs of Gou(Q,t') remain nearly Gaussian.
At Q=289 [6(b)], the deviation of the PDF from the
Gaussian PDF begins to occur at f > 63f,: the PDFs are
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FIG. 6. Log-log plots of 7,,(Q) vs Q /27 at two Q values: (a)
0=6.7; (b) Q=89.

nearly Gaussian in the ISR ranging from f to 63f,. On
the other hand, at Q =6.7 [6(a)], the deviation begins to
occur at the low frequency located in the ISR and is
mainly due to contamination by the intermittency effects.

Let M,, (a) be the (2n)th order moments of W, u(a,t’).
If we substitute a length scale /, given as / =2aU with the
mean flow velocity U at the measuring point, for the time
scale a, then [f =U holds approximately. At the length
scales ! corresponding to the ISR frequencies, M,, (/) ap-
proximately satisfies the scaling property:

an

M, (<I™" 3.7

where &,, is the scaling exponent of M,,(I). The struc-
ture function wavelet (iv) also presented the same scaling
behavior.

Figure 7 shows the plots of §,, as a function of 2n. For
all the given wavelet functions, §,, takes the same
behavior. It is, therefore, possible to say within our ex-
amined range of 2n that the deviation of the PDF from
the Gaussian PDF depends very little on the type of
analyzing wavelet. The §,, curves are similar to the
&,(Q) curve at Q =3.3 (Fig. 4). The structure functions,
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FIG. 7. Plots of {,, vs 2n. (Q) Mexican hat: (O) the first
derivative of Gaussian function; (X) top hat; (A) structure
function.

therefore, include contamination by the intermittency
effects inherent in the VSR.

IV. CONCLUSIONS

In the limit of an infinitely long ISR, there appears to
be no anomalous scaling. Then, the linear scaling ex-
ponent §,,(Q)=2n/3, the Kolmogorov scaling, is ex-
pected. Real turbulence exhibits a finite width of the
ISR, at higher frequencies in which the viscous effects,
the energy dissipation and the work by viscous shear
stress, cannot be neglected and become more and more
significant; therefore, the VSR cannot be clearly isolated
from the ISR, and thus the ISR has a high-frequency-
sided region which contains properties of both a pure
ISR and a VSR. At moderate Reynolds numbers, the
non-Gaussianity and the anomalous scaling are due to
potential contamination by the VSR of the linear scaling
expected in a pure ISR limit.

If the PDF of GQu(Q,t') were exactly Gaussian at
every ISR frequency, one would obtain &,,(Q)=2n /3 for
all n. In such a hypothetical situation, the behavior of
Gou(Q,t'), in the statistical sense, must be completely
self-similar in the pure ISR. However, since the fluid is
viscous, real turbulence at finite R, values cannot take
completely self-similar velocity structures [11]. Hence, in
the Gabor transform analysis with finite frequency bands,
the viscous effects make §,,(Q) nonlinear. On the other
hand, at higher frequencies in the VSR, the behavior of

|
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Gy(Q,t’) becomes intrinsically intermittent irrespective
of R,. The fast falloff behavior in the VSR of E,(f) is
evidence of the appearance of the intermittency effects.

The scaling property is an attribute of nonlinear effects
on turbulent fluid motion. Real turbulence includes
effects due to the viscous breaking of the scaling transfor-
mation invariance in the inviscid limit of the Navier-
Stokes equation. At finite R, values, the scaling law
holds approximately for the Gabor and wavelet analysis,
and not exactly by any means. A decrease in R, worsens
the approximation, and the scaling law holds exactly only
in the limit of an infinitely long ISR. Further investiga-
tions into the R, dependence of the scaling property are
needed to make sure of the validity of the above inference
(e.g., Grossmann et al. [12]).

APPENDIX

The Gabor function g (#) is expressed in terms of { and
o like in Eq. (2.1) as

1 o
(t_tl): - lelﬂ(t t)+19_+_c.c'
g Voo ! ]
(t—t')?
Xexp | ————— |, (A1)
P 202
where the term c.c. denotes complex conjuga-
tion. The Fourier transform of g(t—t'), G(w)
= | = _exp(—iwt)g(t —t')dt, is given as
20 )2
G(o)=Le 1o leioexp _Eﬂiﬂ
) 2 2
+e_’9exp __OLa)z—tﬁg)_ } (A2)
If t —t'=At in Eq. (A1) and A7 /V20 =1, one has
At=V20 . (A3)

Next, if ©—Q=AQ in Eq. (A2) and AQo /V2=1, one
gets

(A4)

Since g (t —1t')=( 1/27T)fwa((o)exp(iwt)dco, the Ga-
bor transform coefficient, Gyu(Q,t')= f * L ult)g(t
—1t')dt, is expressed as

A | © ot rre i0 oA w—0)* P o w+Q)?
=— @ —— |+ —— | do . AS
Gou(Q,t') p fﬂ»e U (w)[e exp ) e Yexp 2 @ (A5)
The second moment of Gyu(2,t’) is given as
M,(Q a=-L[" |Gou(Q,t")|%dt’ . (A6)
L 27 -7 277

Substituting Eq. (AS) into Eq. (A6) and then carrying out the integral with respect to ¢’, we get
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2
_ |1 o sin(w—w' )T ., , i0 _az(a)——ﬂ,)2 —i0 _cr""(a)-}-().)2
M,(Q,Q) o ff—m4(w-—w')T U*(0)U(w') je'%exp B — +e " Yexp — 5
20 1 __ 2 X 2( 2
X 1e "i%exp | —Z (w2 2) +effexp | — L2 T2 (w2+Q) dodo' . (A7)

From the property of the sinc function with a sufficiently large value of T, we obtain

2

=L
M2(Q’Q) 4

f_w |U(w)]? [exp[ — oo w—Q)P]+exp[ —ocHw+Q)?]

l )2 cHw+Q)?

2

w—
2

+2cos(260)exp | — g exp | —

]dw . (A8)

The vanishing integral of g(z) is that G(w) must take a zero value at w=0; therefore, Eq. (A2) must satisfy
exp(—o202/2)=0. Here, taking 0 =Vv"2Q /Q into account, one finds a condition such that exp(—Q?)~0, which tech-
nically requires that Q >2.0. Under this condition, the third term on the rhs of Eq. (A8) can be neglected. In addition,
the first and second terms make the same contribution to M,(Q,Q), and |U (0)|*=E 1(w). Thereby, Eq. (A8) can be re-
duced to

2

V2

My(Q, )= |~

f_w E|(w)exp[— oo o—Q)ldw .

(A9)
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